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Abstract

Two prototype cyclones were the subjects of a comparative research campaign with a diesel 

particulate matter sampler (DPMS) that consists of a respirable cyclone combined with a 

downstream impactor. The DPMS is currently used in mining environments to separate dust from 

the diesel particulate matter and to avoid interferences in the analysis of integrated samples and 

direct-reading monitoring in occupational environments. The sampling characteristics of all three 

devices were compared using ammonium fluorescein, diesel, and coal dust aerosols. With solid 

spherical test aerosols at low particle loadings, the aerodynamic size-selection characteristics of all 

three devices were found to be similar, with 50% penetration efficiencies (d50) close to the design 

value of 0.8 µm, as required by the US Mine Safety and Health Administration for monitoring 

occupational exposure to diesel particulate matter in US mining operations. The prototype 

cyclones were shown to have ‘sharp cut’ size-selection characteristics that equaled or exceeded the 

sharpness of the DPMS. The penetration of diesel aerosols was optimal for all three samplers, 

while the results of the tests with coal dust induced the exclusion of one of the prototypes from 

subsequent testing. The sampling characteristics of the remaining prototype sharp cut cyclone 

(SCC) and the DPMS were tested with different loading of coal dust. While the characteristics of 

the SCC remained constant, the deposited respirable coal dust particles altered the size-selection 

performance of the currently used sampler. This study demonstrates that the SCC performed better 

overall than the DPMS.
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INTRODUCTION

Health issues associated with workplace exposure to diesel particulate matter (DPM) have 

received substantial attention and regulatory scrutiny. Currently, the Mine Safety and Health 

Administration (MSHA) regulates DPM exposures in US metal and non-metal mines to 160 

µg m−3 total carbon (71 Fed. Reg. 28924, 2006). The International Agency for Research on 

Cancer has labeled diesel exhaust as a human carcinogen (Benbrahim-Tallaa et al., 2012), 

while the National Institute for Occupational Safety and Health (NIOSH, 1988) has 

identified DPM as a potential occupational carcinogen (NIOSH, 2012). A recently published 

NIOSH study reported that heavy exposure of non-metal miners to diesel exhaust increased 

their risk of death from lung cancer (Attfield et al., 2012) and the National Cancer Institute 

(NCI) has shown additional evidence of lung cancer mortality risk (Silverman et al., 2012).

Aerosols in mine environments, where diesel-powered equipment is used, exhibit an 

aerodynamic bimodal distribution with a distinct accumulation mode peak near 120 nm and 

a coarse mode peak at ~6 µm with a minimum between both modes at ~0.8 µm. The diesel 

exhaust aerosol is the major source for the accumulation mode, while the aerosol from the 

mining operation is primarily in the micrometer mode (Marple, 1986; Cantrell and Rubow, 

1991). The US Bureau of Mines demonstrated that mine dust and diesel exhaust aerosol can 

be separated and measured on the basis of size, with the preferred cut-off size being 0.8 ± 

0.1 µm (Cantrell and Rubow, 1991). Due to these considerations, a personal diesel aerosol 

sampler was designed employing an impactor as a size selector and the performance of this 

sampler has been continually improved (Noll et al., 2005). Currently, this DPM cassette 

sampler is used by MSHA in US underground metal/non-metal mines during enforcement-

related inspections (Mine Safety and Health Administration, 2001), and it is also used by 

mine operators to measure engineering control efforts in mines. The filter from the DPM 

sampler is analyzed using NIOSH method 5040 (Birch, 2002) to measure the concentration 

of elemental carbon (EC) and total carbon. During the above-mentioned NCI study, the 

relationship of respirable EC (REC) and submicron EC (SEC) collected with the Bureau of 

Mines samplers was also investigated. The analysis of the data obtained from air monitoring 

surveys, conducted between the 1998 and 2001, showed that REC is highly correlated with 

SEC and that a linear relationship between REC and SEC ‘extends over a very broad 

concentration range and across different environments’ (Vermeulen et al., 2010). The same 

air monitoring surveys showed how the submicron non-combustible dust was a small 

fraction of the respirable dust (Vermeulen et al., 2010). MSHA adopted the DPM cassette 

sampler to minimize the collection and potential confounding effect of respirable dust.

Respirable coal mine dust and DPM measurements are areas where direct-reading devices 

can provide a more timely evaluation of control technologies or worker exposure. NIOSH 

has developed and tested a number of direct-reading monitor technologies in mines 

(Volkwein et al., 2004, 2006; Noll et al., 2013). Based on the success of these endeavors, 
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MSHA has incorporated direct-reading monitors into its proposed coal dust rule (75 Fed. 

Reg. 64412, 2010). Direct-reading DPM monitoring needs to separate the diesel aerosol 

from the super-micrometer mining dust (e.g. coal) to avoid analytical interferences. Direct-

reading DPM monitors generally use optical properties of the DPM and EC as the analytical 

approach and the interferences from respirable mine dust are extremely problematic (Noll et 

al., 2013). In principle, the separation can be accomplished by using a size selector such as 

an impactor, as in the DPM cassette sampler. Limitations of impactors, however, include the 

need and expense of replacing a disposable unit or an oiled impaction substrate after each 

use. Potential overloading of the impactor during sampling in very dusty conditions is an 

additional unexplored concern. Other size selectors, such as cyclones, offer an alternative to 

impactors if a similar d50 cut point, sharpness, and mass penetration can be obtained. 

Cyclones have been widely used for particle size-selective sampling of ambient, workplace, 

and indoor air. They can be designed to obtain the desired d50 at the desired flowrate (Kenny 

and Gussman, 2000; Stein and Wells, 2010). Evidence from ambient aerosol sampling 

suggests that, in relation to size-selection characteristics, cyclones are in general less 

susceptible to particle loading effects than impactors. The results of a study on an ambient 

PM2.5 cyclone (BGI Inc., VSCC 4.764) showed that the cut point was not affected when the 

cyclone was challenged with a dust load of 3 mg. During the same study, the US 

Environmental Protection Agency Well Impactor Ninety-Six PM2.5 impactor showed 

impaired performance with similar dust loading (Kenny et al., 2004).

This study evaluates the use of a cyclone as a preselector for DPM aerosol in mine 

environments. Two candidate prototype cyclones were designed on the basis of pre-existing 

family models (Kenny and Gussman, 1997) to give a cut point of 0.8 µm at 2.2 l.p.m. while 

maintaining a sharp cut. These cyclones were evaluated to determine penetration, 

gravimetric collection efficiency, and the effect of loading when sampling DPM and mining 

dust.

EXPERIMENTAL DESIGN AND METHOD

The size-selecting device employed in the DPM cassette is a two-part unit consisting of a 

Dorr-Oliver (DO) cyclone followed by an SKC diesel particulate impactor (225–317, SKC 

Inc., Eighty Four, PA, USA). Throughout this article, this two-part unit is referred to as the 

diesel particulate matter sampler (DPMS). Two different cyclones (Fig. 1), a Sharp Cut 

Cyclone 0.695 (SCC) and an Extra Sharp Cut Cyclone 0.746 (ESCC) (BGI Inc., Waltham, 

MA, USA) were compared to one another and to the DPMS. The flowrate through the SCC 

and ESCC was set at 2.2 l.p.m. throughout the study. The flowrate through the DPMS (DO 

cyclone and impactor) was maintained at the 1.7 l.p.m. used in the DPM cassette sampler 

(Gilibrator, Gilian Instrument Corp., Wayne, NJ, USA).

Size selector penetration measurement

The penetration efficiency of the three devices was evaluated via a commonly used method 

(Maynard and Kenny, 1995; Maynard et al., 1999; Görner et al., 2001). In a calm air 

chamber (Fig. 2), ammonium fluorescein (C20 H15 NO5; AF) polydisperse aerosols were 

generated by a Sonotek ultrasonic atomizing nozzle (Sonotek Inc., Highland, NY, USA) 

connected to a compact infusion syringe pump (Harvard apparatus, Holliston, MA, USA). 
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The feed rate for the infusion pump was maintained at 5·× 10−3 ml s−1. The nozzle of the 

generator was located at the top of the chamber and was surrounded by three 210Po 

radioactive sources to neutralize the aerosol. Three AF solutions of different concentrations 

were prepared to generate aerosols with the targeted count median aerodynamic diameters of 

0.6, 0.8, and 1.7 µm. Scanning electron microscopy (Jeol USA, Peabody, MA, USA—

operated at NIOSH, Morgantown, WV, USA) observations showed only spherical dry 

particles. The cylindrical fiberglass chamber (0.45 m diameter, 2.4 m high) was fed with 

compressed filtered air and a rotameter (F-4100, Gilmont Instruments, Barrington, IL, USA) 

controlled the flowrate of 20 l.p.m. to eight radial inlets at the top of the chamber. The 

generated aerosol was fed at a constant rate at the same cross-section of the filtered air to 

ensure adequate mixing. The relative pressure of the chamber was maintained negative at 

2.49 Pa (0.01″ H2O) measured by a magnehelic gauge (Dwyer Instruments Inc., Michigan, 

IN). The calm air conditions were ensured by a downward air velocity of 2 mm s−1. 

Preliminary investigations showed that the aerosol in the sampling area of the calm air 

chamber was spatially and temporally stable and uniform.

The AF aerosol present in the chamber and that penetrating through the size selector were 

measured by sampling alternately from either source to a 3321 Aerodynamic Particle Size 

(APS) analyzer (TSI, Shoreview, MN, USA) placed directly below and outside the chamber. 

The inlet for the chamber aerosol was the end of a 1/4 in. diameter conductive silicon rubber 

tube that had a clamp used to adjust the inlet pressure at the APS to match that determined 

when the size selector’s output was being sampled. The inlet velocity was varied from 2.2 to 

2.9 m s−1 based on the selected flowrate for the DPMS and cyclones. A switch valve 

(ASCO, Florham Park, NJ, USA) was used to alternate sampling between the chamber 

aerosol and the output from the size selector. By disconnecting the sheath flow from the 

APS inlet, a sampling rate as low as 1 l.p.m. under standard operating conditions was 

provided from the chamber to the APS. To match the overall sampling rate to the required 

values for each device, clean ‘makeup flow’ was introduced via an additional line via a 

rotameter connected to a vacuum exhaust. The APS calibration was checked before the 

experiment with monodisperse polystyrene latex particles (Duke Scientific, Palo Alto, CA, 

USA).

For each of the three size-selecting devices and three aerosols generated, the APS was set to 

measure stable size-segregated particle number concentration with (W) and without (WO) 

the tested device present in the following series of seven settings for one experiment [24 

scans (20 seconds per scan)]: WO1-W1-WO2-W2-WO3-W3-WO4. For each device (DPMS, 

SCC, and ESCC), the number of concentrations for each size bin of the APS for the three 

AF particle size distributions were summed to determine the overall number distribution 

with and without the device. This summation was done to enhance statistical rigor by 

providing an adequate number of particles across the relevant size range. Penetration by 

particle size was calculated as the particle number concentration measured with the tested 

device (W) divided by the background concentration determined using the mean number 

concentration immediately preceding and following the device measurement (WO). The 

penetration characteristics for the three tested devices (DPMS, SCC, and ESCC) were 

compared graphically by plotting the mean penetration ± 95% confidence interval versus 

particle size (Statistica, Version 6, Statsoft, Tulsa, OK, USA). The penetration versus 
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particle size graph for each device was inspected to obtain the particle size associated with 

the 50% ratio (d50), the 84% ratio (d84), and the 16% ratio (d16). The sharpness of the size 

selectors was calculated as (d16/d84)0.5.

Mass collection tests

The second phase of the study was conducted in two identical Marple aerosol chambers 

(Marple and Rubow, 1983), one specifically for coal mine dust studies and the second 

specifically for DPM studies. These aerosol test chambers with hexagonal cross-sections are 

2.44 m high with an inside diameter of 1.19 m. The aerosol is introduced at the top of the 

chamber and thoroughly mixed in this region by the energy of air jet entering at the side of 

the chamber. From this mixing area, the aerosol flows downward through a 10-cm-thick 

honeycomb structure where turbulence in the air is reduced providing a low velocity 

downward flow through the test section portion of the chamber. A table supporting the 

samplers can be rotated, reducing the effects of any variation in the dust concentration 

within the chamber. Past work (Marple and Rubow, 1983) has shown the sampling zone of 

the chambers, even without rotation, to be very uniform (relative standard deviation between 

samples <0.05).

In the first Marple chamber, three Pittsburgh Seam coal dusts (Pitt A, Pitt B, and Pitt C) 

were individually aerosolized using a TSI 3400A fluidized bed dust generator (TSI) and 

dispensed into the chamber. The size characteristics of the three coal dusts are provided in 

Table 2. Before entering the chamber, the aerosol was neutralized by a TSI 3012A NRC 

Aerosol Neutralizer (TSI). In the second separate chamber, a portion of the exhaust 

emissions from a Kubota diesel engine attached to a 10-kW generator provided DPM 

aerosol. Three resistive load conditions were employed for the DPM generator (20, 50, and 

80%).

In each chamber, each size selector device (DPMS, SCC, and ESCC) was connected to a 

preweighed 37-mm polyvinyl chloride (PVC) membrane filter (GLA-5000, Pall, Port 

Washington, NY, USA) in order to collect aerosol for gravimetric analysis. Filter cassettes 

used with cyclones were modified to permit the cyclone outlets to extend ~1.5 mm into the 

filter cassette to minimize cyclone outlet loss in this region. In addition, three BGI-4CP 

cyclones (BGI Inc.) using a Higgins–Dewell (HD) design, operated at a flowrate of 2.2 

l.p.m., were used to collect respirable dust samples. The concentration in the chambers was 

monitored using a tapered element oscillating microbalance (TEOM) 1400a (Thermo 

Scientific, Franklin, MA, USA) with a BGI-4CP cyclone inlet operated at 2.2 l.p.m.

For coal dust tests, a respirable mass loading of ~4 mg was targeted to provide a quantifiable 

amount on the filter samples. Three repetitions were conducted for each type of coal dust. 

For the diesel tests, the target respirable mass loading was 2 mg to obtain adequate masses 

on the filters. Three repetitions were conducted for each type of coal dust and for each DPM 

generator load condition.

Gravimetric samples were equilibrated, neutralized, and pre- and post-weighed in a 

controlled environment set at 22 ± 0.7°C and 50 ± 2% relative humidity. Balance precision 

was better than 5 µg and the gravimetric analysis had an overall limit of quantification = 14 
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µg in a single weighing (Page and Volkwein, 2009). Blank filters were used to correct the 

final mass determination. Post-weights of the filters were used to determine the aerosol mass 

penetrating the size selector device in each testing condition.

The mass obtained from the DPMS samples was adjusted to take into account the different 

flowrate for this device compared to the cyclones. The Kruskal– Wallis analysis of variance 

(ANOVA) was used to compare the masses of diesel or coal penetrating through the three 

devices (Statistica, Version 6, Statsoft). The Kruskal–Wallis ANOVA is the appropriate test 

for comparing multiple independent samples when limited by a small sample size and a data 

set that is not normally distributed (Siegel, 1956; Cena and Peters, 2011). When the 

Kruskal–Wallis ANOVA indicated significance, a post hoc multiple comparison test was 

used in a pairwise comparison to determine which device’s mass was significantly different 

from each of the other devices (Conover, 1999; Black et al., 2007).

Coal dust-loading tests

To investigate the impact of dust loading on the penetration through the size selectors, 

additional tests were conducted with different loading of coal dust. In the Marple chamber, 

Pitt C was aerosolized; this dust was selected because it had the largest diameter particles. 

Nine DPMS and nine SCC were connected to pre-weighed 37-mm PVC membrane filters in 

order to collect aerosol for gravimetric analysis. The nine SCC used for the dust-loading 

tests were identical to the prototype used in the previous phases but in this case were made 

of stainless steel. The respirable coal dust concentration in the chamber was maintained 

constant and different respirable target loadings were achieved by selecting different 

sampling intervals. After the first respirable target loading of 1 mg was achieved, the 

sampling of one set of three DPMSs and three SCCs was stopped. Similarly, sampling 

continued for the two other sets of three DPMSs and three SCCs to achieve the respirable 

target loadings of 2 and 4 mg. The concentration in the chambers was monitored using a 

TEOM 1400a (Thermo Scientific) with a BGI-4CP cyclone inlet operated at 2.2 l.p.m.

After loading the two types of devices, the penetration curves of the nine loaded DPMS and 

SCC preselectors were determined in the AF aerosol and the protocol described above.

RESULTS AND DISCUSSION

The mean penetrations by size through the three tested size selectors are provided in Fig. 3. 

The mean penetrations were obtained by combining the data from the three aerosols, and the 

95% upper confidence limit [MMAD part + 2 geometric standard deviation (GSD part)] for 

the largest aerosol was used as upper cutoff limit (6.7 µm). The penetration values for the 

DPMS were found between the values for the two cyclones for the range 0.7–1 µm. We note 

that, for the particles with an aerodynamic diameter larger than 1 µm, the penetration 

through the DPMS device is consistently higher compared to that for the two cyclones. The 

small consistent error over the size range of 2–6.7 µm suggests a systematic error and not 

particle bounce. This could be an artifact of the inlet difference between the small (~1 mm) 

DPMS system Dorr-Oliver cyclone inlet and the relatively larger 6.4-mm background tubing 

inlet. This difference is less with the cyclone inlets, whose inlets taper up to 4.7 mm. The 
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enlarged graph for particle sizes below 1.2 µm more clearly shows the cut comparisons of 

the three devices.

Table 1 summarizes the cut characteristics of the three size selectors tested. The values of 

the cut point and sharpness for the DPMS device obtained in this phase can be compared 

with previous published results that showed a count d50 of 0.762 and a sharpness of 1.403 

(Olson, 2001). The cut points (d50) obtained for the cyclone selectors were all well within 

10% of the DPMS. Compared to the DPMS device, the calculated sharpness was slightly 

better (a lower value) for the two cyclones. These results suggest that either of the two 

prototype cyclones could replace the combined DPMS system in sampling DPM aerosols.

In the second phase of the study, the measurement of the mass penetration of DPM and coal 

dust particles demonstrated a more complicated scenario. Table 2 summarized the results of 

the mass collection testing. As expected, the mass penetration of DPM particles is close to 

the HD reference value for all three size selectors. The statistical analysis of the collected 

mass indicated no significant difference among the three devices, even when the results for 

different engine loads were pooled to obtain more statistical power. In contrast, the results 

for the coal mass penetration testing showed different performances between the DPMS and 

the cyclones. The performances of the ESCC and DPMS were significantly different when 

the coal dust data were considered as a whole. The SCC cyclone showed higher penetration 

of coal particles compared to the DPMS sampler; however, the two-way post hoc 

comparison indicated that the difference was not significant.

The mass fraction of coal dust particles penetrating through the DPMS is in line with an 

earlier characterization of the DPM sampler (Olson, 2001). The average mass penetration 

fraction through the DPMS did not vary substantially when the device was exposed to the 

different coal dust aerosols, whereas the penetration through each cyclone gradually 

increased as the mass median aerodynamic diameter (MMAD) of the coal aerosol increased. 

The d50 of the ESCC is somewhat higher than the DPMS (Table 1), but this is not enough to 

explain the marked difference in coal mass penetration.

An important factor underlying performance in this experiment is that the DPMS is a two-

part size-selective system, while the SCC and ESCC are one-stage devices. Although the 

DPMS received the same aerosol as the SCC and ESCC, the Dorr-Oliver cyclone passed 

only a sub-fraction of the aerosol to the DPMS impactor stage, whereas the prototype 

cyclones were challenged with the aerosol without preseparation. This means that the SCC 

and ESCC size separated an aerosol that had not only a larger size distribution but also a 

considerably higher mass concentration than the aerosol separated by the impactor stage of 

the DPMS. The respirable Dorr-Oliver cyclone is intended to protect the impactor in the 

DPMS from exposure to the non-respirable fraction of particles that might cause its 

overloading. The coal aerosols used in these tests were characterized using Marple Personal 

cascade impactor samples (Table 2) (Model 290, Thermo Electron Corp., Franklin, MA) 

(Volkwein et al., 2004) and reconstructing the size distributions by applying an inversion 

method (Raabe, 1978). The aerosol mass loadings applied to the different samplers could 

then be calculated from the size distributions of the three coal dust aerosols. This showed 

that the effective loading mass corresponding to 4 mg of respirable particles was different 
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for each of the three different test aerosols. While the mass loading on the DPMS impactor 

was consistently around 4 mg, the aerosol mass loading on the two cyclones varied from ~5 

mg (Pitt A) to 13 mg (Pitt C). As a result of the significant difference in coal penetration 

between the DPMS and ESCC, the ESCC prototype was excluded from the subsequent 

testing.

To quantify the effect of dust loading on the performance of the size selectors, the SCC and 

DPMS were used to sample 1, 2, and 4 mg of respirable Pitt C coal dust. After each loading 

in the Marple chamber, the penetration curves of each device were determined with AF 

aerosol in the calm air chamber. The average penetration characteristics for each device at 

each loading are summarized in Fig. 4 and Table 3. For the SCC, the d50 values were not 

significantly different for the different loadings (Kruskal–Wallis ANOVA P = 0.366) and 

loading did not affect the sharpness values (Kruskal– Wallis ANOVA P = 0.2033). Loading 

affected the DPMS and moved the penetration curve downward allowing fewer small 

particles (within the range of the APS) through the device with each increase in loading. By 

using the APS, it was not possible to measure the entire penetration curve for the loaded 

DPMS; however, the effect of loading can be clearly seen. The only DPMS values that could 

be statistically compared for the different loadings were the d50 metrics for 0 versus 1 mg 

and these were significantly different (Mann– Whitney U-test, P = 0.0495). Since the d84 

values could not be obtained on the loaded DPMS, sharpness values could not be determined 

for any DPMS loading except the clean (0 mg) condition.

These results have important implications. The penetration through the SCC is constant 

when the size selector is challenged with dust loadings common during sampling in a 

mining environment. The aerosol mass depositing inside the SCCs did not affect the 

penetration characteristics (d50 and sharpness) of the cyclone. It is important to remember 

that the coal dust aerosols entering the SCC cyclones were not only in the respirable size 

range but also contained non-respirable particles. This outcome is crucial because the 

separation of DPM aerosols from mine dust during field campaigns relies on the 

characteristics of the size selector.

The loading experiments showed that the penetration characteristics of the DPMS are not 

consistent, but they are affected by the presence of dust particles deposited inside the 

impactor. This is an intrinsic problem with impactors because the separation carried out by 

any impactor is governed by the jet-to-collector separation distance and a host of other 

factors governing the adhesion of deposited particles to the impaction surface (Hinds, 1999). 

A previous study conducted on the DPMS sampler (Cantrell and Rubow, 1991; Noll et al., 

2005) did not assess the consistency of the penetration characteristics of DPMS when loaded 

with mine dust. This study demonstrates that respirable coal dust particles deposited in the 

DPMS have obviously altered its size-selection performance.

CONCLUSIONS

This study compared two prototype cyclones to a combined respirable cyclone and impactor 

DPM sampler. Currently, the combined system is employed as a size selector to separate 

mine dust and its related potential analytical interferences from DPM. The objective of this 
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study was to evaluate the possible replacement of the DPMS sampler with a reusable SCC, 

with a view to developing direct-reading monitors for both DPM and mine dust. The 

performance of the devices was assessed by studying the penetration characteristics of the 

three size selector systems, the mass penetration of coal dust and DPM, and the effect of 

loading.

The cut points (d50) obtained for the two prototypes were all well within 10% of the DPMS 

and the calculated sharpness was slightly better (a lower value). The two prototypes allowed 

the same penetration of DPM-alone aerosol in terms of mass. The mass penetration of coal 

aerosols was found to be significantly higher for one prototype (ESCC) compared to the 

DPMS. Explanations for this finding were provided. For this reason, this candidate cyclone 

was excluded from the third phase testing.

The results of the loading study on the DPMS and remaining prototype cyclone (SCC) 

showed that the DPMS and SCC have similar penetration characteristics when both size 

selectors are clean. The SCC maintains these characteristics when loaded with coal dust 

particles that have been separated from DPM. On the other hand, the penetration 

characteristics of the DPMS are affected by mass loading with coal dust. The performance 

of the current DPMS under loading is a new concern and this deficiency needs to be further 

evaluated and more precisely quantified. In addition, the effect of this deficiency of the 

current DPMS on bias in sampling DPM samples in mining environment should be 

investigated. Due to this loading problem, shifting the cut characteristics of the DPMS even 

with a preselecting respirable cyclone, the SCC performed better overall than the currently 

used DPMS. The results of this study indicate that the SCC could be used as a size selector 

for DPM measurement and sampling as it has appropriate penetration characteristics and 

low susceptibility to loading.
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Figure 1. 
Cyclones used in the study. Drawings are to scale and the outside diameter of the cyclone 

body is ~2.5 cm. The inside diameters of the inlets are 1.676 and 1.067 mm for the SCC 

(left) and ESCC (right), respectively.
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Figure 2. 
Layout of the experimental setup used to characterize the size selector devices using AF.
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Figure 3. 
(Top) Comparison of the mean penetration by size ± 95% confidence interval for the three 

devices using the combined AF aerosol <6.7 µm. (Bottom) An enlarged version of the 

penetration region below 1.2 µm.
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Figure 4. 
Comparison of the mean penetration by size ±95% confidence interval for the clean DPMS 

and SCC and when loaded with coal dust particles.
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Table 1

Cut characteristics of the three clean devices determined using AF during Phase I of the study

Device d50 d84 d16 Sharpness

DPMS

    Mean (µm) 0.757 0.600 1.056 1.33

    SD (µm) 0.005 0.003 0.032 0.02

SCC

    Mean (µm) 0.740 0.631 0.978 1.25

    SD (µm) 0.014 0.009 0.018 0.00

ESCC

    Mean (µm) 0.808 0.661 1.040 1.25

    SD (µm) 0.001 0.016 0.033 0.03
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Table 3

Cut characteristics of the size selectors under different coal loading conditions using AF to determine the cut

Device and
load

Mean (SD)
d50 (µm)

Mean (SD)
sharpness

SCC 0 mg 0.782 (0.037) 1.21 (0.02)

SCC 1 mg 0.774 (0.050) 1.20 (0.02)

SCC 2 mg 0.787 (0.057) 1.21 (0.02)

SCC 4 mg 0.796 (0.041) 1.20 (0.02)

DPMS 0 mg 0.762 (0.003) 1.30 (0.01)

DPMS 1 mg 0.617 (0.002) Cannot determine

DPMS 2 mg Cannot determine Cannot determine

DPMS 4 mg Cannot determine Cannot determine
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